Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123948, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38309006

RESUMO

Binding characteristics of potent non-nucleoside HIV-1 reverse transcriptase inhibitors, 4-(2',6'-dimethyl-4'-formylphenoxy)-2-(5″-cyanopyridin-2″ylamino) quinoline (1) and 4-(2',6'-dimethyl-4'-cyanophenoxy)-2-(5″-cyanopyridin-2″ylamino) quinoline (2), to bovine serum albumin (BSA) under simulative physiological conditions were investigated by multiple spectroscopic and computational methods. The experimental results demonstrated that (1) and (2) bound to BSA at site III (subdomain IB), and quenched BSA fluorescence through a static quenching process. The binding interaction of (1) or (2) to BSA forms stable complexes with the binding constants (Kb) at the level of 104 L/mol and the number of binding site was determined to be 1 for both systems, indicating that new synthesized compounds occupied one site in BSA with moderate binding affinities. Based on the analysis of the thermodynamic parameters, it can be indicated that the main binding forces for interaction between BSA and both compounds were hydrogen bonding and van der Waals force. Synchronous fluorescence results revealed that the interaction of two compounds with BSA led to modifications in the microenvironment surrounding tryptophan residue of BSA. Circular dichroism spectra demonstrated alterations in the secondary structure of BSA induced by (1) and (2). Moreover, the experimental data of molecular docking and molecular dynamics (MD) simulations supported the results obtained from multiple spectroscopic techniques, confirming the binding interactions between both compounds and BSA.


Assuntos
Quinolinas , Soroalbumina Bovina , Soroalbumina Bovina/química , Simulação de Acoplamento Molecular , Sítios de Ligação , Dicroísmo Circular , Termodinâmica , Ligação Proteica , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
2.
J Photochem Photobiol B ; 212: 112027, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32977112

RESUMO

Modification of the structure of small molecular probe which can act as photocleavage reagent has become a considerable challenge to improve the ability to target specific sites on a large protein. These photoreagents can provide valuable information on the binding site recognition and the mechanism of the photocleavage reaction under photochemical control. In this study, site specific photocleavage of lysozyme and avidin by fluorescein derivatives, fluorescein sodium salt (F-1) and 5(6)-carboxyfluorescein diacetate (F-2) were reported here for the first time. Functional groups on the photoreagent have been proven to effect on the interaction with the protein. Cleavage of the proteins by fluorescein derivatives were successful under visible region when irradiating the solution mixture of protein, fluorescein derivative and electron acceptor, cobalt (III) hexamine trichloride, at 490-492 nm. N-terminal amino acid sequencing of the cleaved fragments of lysozyme indicated the cleavage site between Trp108 - Val 109 for both probes, whereas the cleavage of avidin by F-1 and F-2 were detected between Trp70 - Lys71. Binding interaction can be investigated using methods as simple as absorption and fluorescence spectroscopies. Absorption and fluorescence studies indicated the strong binding interactions between fluorescein derivatives and the target proteins. Computational modeling was used to gain a better insight of the protein-probe binding interaction and binding sites. Molecular docking studies indicated that F-1 and F-2 were located near the hydrophilic and hydrophobic sites of both proteins within 4 Å away from the cleavage site. The docking results clarified the binding sites of F-1 and F-2 on proteins, corresponding to the results obtained from the protein photocleavage studies.


Assuntos
Avidina/química , Fluoresceína/química , Muramidase/química , Fotólise , Sítios de Ligação , Transporte de Elétrons
3.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731397

RESUMO

Ubiquitin (Ub) molecules can be enzymatically connected through a specific isopeptide linkage, thereby mediating various cellular processes by binding to Ub-interacting proteins through their hydrophobic surfaces. The Lys48-linked Ub chains, which serve as tags for proteasomal degradation, undergo conformational interconversions between open and closed states, in which the hydrophobic surfaces are exposed and shielded, respectively. Here, we provide a quantitative view of such dynamic processes of Lys48-linked triUb and tetraUb in solution. The native and cyclic forms of Ub chains are prepared with isotope labeling by in vitro enzymatic reactions. Our comparative NMR analyses using monomeric Ub and cyclic diUb as reference molecules enabled the quantification of populations of the open and closed states for each Ub unit of the native Ub chains. The data indicate that the most distal Ub unit in the Ub chains is the most apt to expose its hydrophobic surface, suggesting its preferential involvement in interactions with the Ub-recognizing proteins. We also demonstrate that a mutational modification of the distal end of the Ub chain can remotely affect the solvent exposure of the hydrophobic surfaces of the other Ub units, suggesting that Ub chains could be unique design frameworks for the creation of allosterically controllable multidomain proteins.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Poliubiquitina/química , Humanos , Lisina/química
4.
J Photochem Photobiol B ; 126: 55-9, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23895865

RESUMO

In this study, a molybdenum(VI) peroxo α-amino acid complex, MoO(O2)2(α-leucine) (H2O), was prepared and used as an artificial protease for site-specific cleavage of porcine pepsin, a model protein. Cleavage of pepsin by MoO(O2)2(α-leucine) (H2O) was achieved under photochemical conditions at room temperature and pH 7.0. The reaction was activated by irradiation of the MoO(O2)2(α-leucine) (H2O)-protein mixture by UV light (320 and 340nm) for up to 30min. No cleavage was observed in the absence of MoO(O2)2(α-leucine) (H2O) or the light. The photocleavage yield increased with irradiation time. The cleaved fragments were sequencable, and the cleavage site was assigned to Leu(112)-Tyr(113). The cleavage reaction was quenched by ethanol. Therefore, hydroxyl radicals may be involved in the reaction and responsible for the cleavage of the protein. This is the first demonstration of the successful photocleavage of proteins by a molybdenum complex. This observation can provide a new approach for the photochemical footprinting of metal binding sites on proteins.


Assuntos
Materiais Biomiméticos/metabolismo , Molibdênio/química , Compostos Organometálicos/metabolismo , Peptídeo Hidrolases/metabolismo , Processos Fotoquímicos , Proteólise , Sequência de Aminoácidos , Animais , Sítios de Ligação , Materiais Biomiméticos/química , Etanol/química , Compostos Organometálicos/química , Pepsina A/química , Pepsina A/metabolismo , Especificidade por Substrato , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...